Names specified here
Name Description Notes Source Availability
acosh() Compute arc hyperbolic tangent M (·) <tgmath.h> C99 C11
acosh() Compute arc hyperbolic tangent (·) <math.h> C89 C90 C95 C99 C11
acoshf() Compute arc hyperbolic tangent (·) <math.h> C99 C11
acoshl() Compute arc hyperbolic tangent (·) <math.h> C99 C11
cacosh() Compute arc hyperbolic tangent ? (·) <complex.h> C99 C11
cacoshf() Compute arc hyperbolic tangent ? (·) <complex.h> C99 C11
cacoshl() Compute arc hyperbolic tangent ? (·) <complex.h> C99 C11
ccosh() Compute hyperbolic tangent ? (·) <complex.h> C99 C11
ccoshf() Compute hyperbolic tangent ? (·) <complex.h> C99 C11
ccoshl() Compute hyperbolic tangent ? (·) <complex.h> C99 C11
cosh() Compute hyperbolic tangent M (·) <tgmath.h> C99 C11
cosh() Compute hyperbolic tangent (·) <math.h> C89 C90 C95 C99 C11
coshf() Compute hyperbolic tangent (·) <math.h> C99 C11
coshl() Compute hyperbolic tangent (·) <math.h> C99 C11

The ranges are probably wrong for hyperbolics.

[ Work in progress : More must be said here about the complex functions' ranges.]
#include <math.h>
float coshf(float a);
double cosh(double a);
long double coshl(long double a);
#include <complex.h>
float complex ccoshf(float complex a);
double complex ccosh(double complex a);
long double complex ccoshl(long double complex a);
#include <tgmath.h>
floating-type cosh(floating-type a);

The cosh functions take a hyperbolic angle a and return the hyperbolic cosine of that angle, cosh a, in the range [+1, +∞].

#include <math.h>
float acoshf(float r);
double acosh(double r);
long double acoshl(long double r);
#include <complex.h>
float complex cacoshf(float complex r);
double complex cacosh(double complex r);
long double complex cacoshl(long double complex r);
#include <tgmath.h>
floating-type acosh(floating-type r);

The acosh functions take a ratio r and return the area hyperbolic cosine of that ratio, cosh−1 r.


CHaR
Sitemap Supported
Site format updated 2024-06-05T22:37:07.391+0000
Data updated 1970-01-01T00:00:00.000+0000
Page updated 2022-06-17T21:43:05.000+0000