Names specified here
Name Description Notes Source Availability
atanh() Compute arc hyperbolic tangent M (·) <tgmath.h> C99 C11
atanh() Compute arc hyperbolic tangent (·) <math.h> C89 C90 C95 C99 C11
atanhf() Compute arc hyperbolic tangent (·) <math.h> C99 C11
atanhl() Compute arc hyperbolic tangent (·) <math.h> C99 C11
catanh() Compute arc hyperbolic tangent ? (·) <complex.h> C99 C11
catanhf() Compute arc hyperbolic tangent ? (·) <complex.h> C99 C11
catanhl() Compute arc hyperbolic tangent ? (·) <complex.h> C99 C11
ctanh() Compute hyperbolic tangent ? (·) <complex.h> C99 C11
ctanhf() Compute hyperbolic tangent ? (·) <complex.h> C99 C11
ctanhl() Compute hyperbolic tangent ? (·) <complex.h> C99 C11
tanh() Compute hyperbolic tangent M (·) <tgmath.h> C99 C11
tanh() Compute hyperbolic tangent (·) <math.h> C89 C90 C95 C99 C11
tanhf() Compute hyperbolic tangent (·) <math.h> C99 C11
tanhl() Compute hyperbolic tangent (·) <math.h> C99 C11

The ranges are probably wrong for hyperbolics.

[ Work in progress : More must be said here about the complex functions' ranges.]
#include <math.h>
float tanhf(float a);
double tanh(double a);
long double tanhl(long double a);
#include <complex.h>
float complex ctanhf(float complex a);
double complex ctanh(double complex a);
long double complex ctanhl(long double complex a);
#include <tgmath.h>
floating-type tanh(floating-type a);

The tanh functions take a hyperbolic angle a and return the hyperbolic tangent of that angle, tanh a, in the range [−1, +1].

#include <math.h>
float atanhf(float r);
double atanh(double r);
long double atanhl(long double r);
#include <complex.h>
float complex catanhf(float complex r);
double complex catanh(double complex r);
long double complex catanhl(long double complex r);
#include <tgmath.h>
floating-type atanh(floating-type r);

The atanh functions take a ratio r and return the area hyperbolic tangent of that ratio, tanh−1 r.


CHaR
Sitemap Supported
Site format updated 2024-06-05T22:37:07.391+0000
Data updated 1970-01-01T00:00:00.000+0000
Page updated 2022-06-17T21:43:05.000+0000